PMM U.S.5.R.,Vol.47,No.4,pp.451~-457,1983 0021~8928/83 $10.00+0.00
Printed in Great Britain © 1984 Pergamon Press Ltd.
uDC 539,3:534.1

BIMODAL SOLUTIONS IN EIGENVALUE OPTIMIZATION PROBLEMS

A.S. BRATUS' and A.P. SEIRANIAN

The problem of maximizing the pinimum eigenvalue of a selfadjoint operator
is examined. An isoperimetric condition is imposed on the control variable.
This problem has interesting applications in the optimal design of structures.
In papers on the optimization of the critical stability parameters and the
frequencies of the natural oscillations of elastic systems /1-12/ it was
shown that in a number of cases the optimal solutions are eharacterized by
two or more forms of loss of stability or natural oscillations. In the
case of conservative systems described by selfadjoint eguations this signi-
fies multiplicities of eigenvalues, i.e,, of critical loads, under which
loss of stability or of natural oscillation frequencies occurs. The neces-
sary conditions for an extremum are cobtained in the case when the optimal
solution is characterized by a double eigenvalue. These conditions have a
constructive character and can be used for the numerical and analytical
solution of optimization problems. Both discrete and continuous cases of
the specification of the original system are analyzed. Examples are given.

1. The discrete case. Consider the eigenvalue problem
Alhlu = (1.1

Here A (k] is an m X m-matrix with coefficients a;; (k) (i, j = 1,. .., m) depending smoothly on
the components of the vector h of dimensions n,u is an m-dimensional vector, and A is an eigen-
value.

We formulate the optimization problem as follows: find a parameter vector bk = (hy, Hg . .,
h,) for which the minimum eigenvalue }A will be 2 maximum under the condition

Viy=V, {1.2)
where ¥ is a scalar function and V, is a given constant. It is assumed that V is different-
iable with respect to the variables bk, {i==1,2,..., 1), We assume that a parameter vector ho=

¢ By°,. . L hy") exists for which problem (1.1) has a double eigenvalue which is the smallest of
all the eigenvalues. The eigenvectors corresponding to the multiple eigenvalue A, are assumed
to be orthogonal and normalized, and are denoted by u; and wus. Any eigenvector i, correspond-
ing to the double A; can be represented as a linear combination of eigenvalues u, and Uy, with
coefficients y; and ¥

Uy = Tithy + Valls {1.3)

We give an increment ek, to the parameter vector h, where k is an n-dimensional vector and [
is a small number, and we find the increments of the double eigenvalue and the eigenvectors

/13/
U = Uy + Yoty + &0 + 0 (), A=Ay + ep + 0 (e) (1.4)

where vy, ¥,, ¥ are quantitites to be determined. Substituting expansions {1.4) into {(1.1)
and collecting terms of the order of e, we obtain

Aglhg, Kluy + A [hgl v = Agv + uu, (1.5)

where u, is defined by (1.3), and 4;lke K is a symmetric m X m -matrix with coefficients (Va;,,
k), i,j=1, 2,...m, where

day da,, day; .
Vﬂig"-—-'(-';gf*: -371%’”"?1:3 N il L T N

The partial derivatives of the coefficients of the matrix 4 are computed for h = h,.

By scalar multiplication of Eq.(1.5) in succession by the vectors u, and u, and using the
equation Alhpu; =2, i = 1,2, as well as the orthogonality of the vectors u;and. u,, we
obtain linear homogeneous eguations in the unknown coefficients T, and 7,
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Y1 (@ = 1) + Ta%iz = 0, V1@ + V2 (g — ) =0
Ay = (A1 [hoy k1w, uj); ihj=12
For non-zero y,and y,to exist it is necessary and sufficient that the determinant of this
system equal zero. This .yields a quadratic equation in p
P — (@ + @) b+ (@@ — ayg®) =0 (1.6)

In view of the symmetry of the matrix A4, [k, k] we have a3 = a,. Hence it follows that the
roots of Eq.{(l1.6) are real.
It is convenient to introduce the n-~dimensional vectors

m m m
fr= ¢i§1 ui'u;'Vay;, fa= ﬁgl uiu?Vay; , fs= ‘gl ui'u;*Vay; (.7
where usl, u? (i = 1,2,. .., m) are the coordinates of the eigenvectors u,,u,. With due regard to

the notation introduced we obtain ay; = (fi, k), o = @ay = (f3, k), &tay = (fp, k). Equation (1.6)
has the solutions

pra= LB | BR8] (1.8)

Thus, in accordance with formulas (1.7) we can compute the vectors fy, f,, f; from the matrix
4 and the eigenvectors pu, and ug, and then, by specifying the variation vector k, from (1.8)
we obtain the increments u, and u,0f the eigenvalue. Note that when k chaliges sign the eigen-
value increments change theilr signs as well. It is important to distinguish the cases when
the quantitites u; and u, have the same or different signs which, according to Viet's theorem
pakg = (fy, k) (s, &) — (fy, k)*, are determined by the sign of the guadratic form in the components
of the vector k.
By varying the isoperimetric condition (1.2) and equating to zero the linear part of the
increment of the functional V with respect to &, we obtain
(for B =0, fo=VV .9
The latter signifies that the variation of the parameter vector k must be orthogonal to the
vector f,. We will formulate the first statement.
1°©. If the vectors f,, f;, fs» fs are linearly independent (r >>4), then a refining varia-
tion k of the parameter vector hy exists for which each of the perturbed eigenvalues is larger
than the original eigenvalue Ay p; >0, pup > 0.

Proof. Consider the quadratic form
L (k) = (fs, k)* — (f1, &) (2 F) (1.10)

If for some k the form (1.10) has negative values, then both roots p; and p, will have the same
sign. If, in addition, (fs, k) = 0, then according to (1.8), p, = (1, ¥) and p, = (f, &)
Let us show that a non-zero vector k always exists, which is a solution of the system of
linear equations
(for B) =0, (fs, &) =0, ({1, By = p1 >0, (fa, B) = po > 0 (1.11)

Indeed, by virtue of the assumption that the vectors fo,f, fy, fs are linearly independent, the
rank of this system's matrix equals four, which signifies the existence of non-zero vectors
k satisfying the system of linear equations (1.11). The latter proves the possibility of con-
structing a refining variation in the case considered.
We will now study the case when the system of vectors fy, fy, fon fs 15 linearly dependent.
Let us consider the linear subspace of all vectors spanned by the vectors fg, fi, fo, fs and in
this subspace choose an orthogonal basis f,, e, e, (the dimensions of the subspace are no
higher than three). We assume that (f,, f,) = (e, &) = (&, €) 7= 0. We expand the vectors fj, fs fa
with respect to the basis vectors
fr = bofo + byey + ey, fo = Cofo T C16y T €a€g
fs = dofo + dhey + dyey
Bere by, ¢, d; (i =0,1,2) are the coordinates of the vectors fy, f,, fs in the basis chosen.
We complete the basis f,, ¢, ¢ up to an orthogonal basis for the whole space, having ad-
ded on to it the vectors eg, €. . ., €a-1. By virtue of condition (1.9) we represent the vector
k= lLe + Le, + . . . + lp-1€nq with arbitrary constants [ (i=1, 2,...,n— 1)

Substituting the resultant expansions into (1.10), we obtain
L (k) = DI,* + 2BLl, + CL} (1.12)
D =d? — by, B =dydy — 1/2 (byey + bacy)
C = dy® — by,
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We will formulate the next statement.

29, If the parameter vector h, yields an extremum of the optimization problem with a
double eigenvalue Ay then it is necessary that: 1) the system of vectors f, f,.f,,f; be linear-
ly dependent and 2) the guadratic form (1.10) should admit of only non-negative values for
any admissible non-zeroc vectors k, which is equivalent to the conditions D > 0,DC — B* > 0.
where D, B, C are defined by Egs. (1.12).

Proof. The necessity of the first condition follows from statement 1°. Let us prove the
necessity of the second condition. Suppose that the vector h, yields an extremum of the
optimization problem with a double eigenvalue A, If form (1.10) admits of negative values
for some vector k, then the roots p;, 4 will have the same sign. By changing, if necessary,
the sign of the vector k we can arrange for both roots to be strictly positive, which indicat-
es the possibility of choosing a refining variation which splits the multiple eigenvalue Aig
Consequently, for an extremum it i5 necessary that form {1.10) be non-negative for all non-
zero k. Using representation (1.12), from this we obtain D >0, DC — B* = 0.

Note that form {1.10) can take zero values as well, as follows from the existence of non-
zero vectors k orthogonal to the subspace formed by the vectors f,, fy. fss fo-

The conditions imposed on the coefficients .D, B, C, obtained above, can be constructed
directly by using the linear dependence of the vectors f,, fy, /s fs- To do this we will write
the linear combination &yf, + 6yfy + 8ufy + Oafs = 0, where the coefficients §; do not all equal
zero simultaneously. For example, let 8;5 0. Then we express the vector f, in terms of the
vectors fy, fy, fy, substitute it into (1.10) and use (1.9). As a result we obtain a quadratic
form in the quantities (k, f,), (&, f)

L (k) = 51“ (’5‘ fx)’ + (2615: e 53’) (k, f;). (k, f:) + as* (k: Y:)’ (1.13)

which is non-negative if
8,8, > 8,4 (1.14)

We can verify that the other cases (§; =0 or §, = 0) also lead to ineguality (1.14).
Condition {1.14) is analogous to the conditions D >0, DC — B 0.

Strict ineguality in (1.14) ensures that form (1.13) is positive definite. 1In this case

L{k)=0 if and only if (&, f,) = (k f,) =0 under the condition (k,f,) = 0. Because of the
linear dependence of the vectors f, fi, fi, /s we also obtain (k,f,} = 0. Note that the system of
equations (&, f;) =0( = 0,1, 2,3) always has nop-trivial sclutions when n>>4. From (1.8) it
follows that = s =0, and the question of the optimality of the vector horeduces to an
investigation of the signs of the second variations of the double eigenvalue A,

Consider the case a = 3. Let the rank of the matrix compesed of the vectors fo, fuifarfo
equal three. Then the system of linear equations ‘(k,f;) = 0(i==0,1, 2, 3) admits of only the
trivial solution k = 0. Thus, in this case the condition §,8, > 8,34 is a sufficient extremum
condition in the optimization problem being considered, since L (k) >0 for any non-zero k
satisfying the condition (k, fo) = 0. Similarly, in the sase n == 2, when the rank of the matrix
composed of the vectors f,, fi, f,, fs equals two, the condition §,8, > 8,4 is a sufficient ex~
trumum condition.

Example. Consider the oseillatory system shown in the figure /10/.
The oscillations of this system are described by the egua-
tion

% 1’4 _w_ 0 0 y By
h{ m

—wW— NV | P Y
A U I
. H 0 z
Q“"‘JVW\F“' s
p where &;(i=1{, 2 8 are the rigidities of the couplings, m
A

is the mass of the rigid rod, 2t is its length, Iistherod's

Ay moment of inertia relative to the point 0, and w ({i=1,23
3 are the displacements and the angle of rotation. The eign-
2 VYV values are
} 4, M‘““mlg=£b—l—;—5-fia }~:‘—=W22=ﬁ‘—h~’¥: %”%ﬂ=—i—£~kx
Fig.l

respectively. If 2k 4 h,=hy,, then we have a double natural
frequency (it is assumed that 2/l > hyfm).

We consider the problem of choosing the rigidities Ai>0(i=1, 2 3) satisfying the con-
dition
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(¢y B) = cxhy + cghy + cahy = ¢y > 0 (1.15)

and maximizing the double natural oscillation frequency. Here ¢ (¢=0,1,2,3) are certain
specified numbers,
In accordance with Egs.(1.7) we write the vectors

;,:%(2,1,0). jzz-._r‘;(o,o,i), fa=0, fo= (1, c:c5)

From (1.10) and condition (1.38) become
L (k) = —~ (A k) (fo, k)i (e, ) = O3 k = (ku, kg, 5a)

If the vectors fy, fi,/; are linearly independent, it is possible to construct a refining
variation. Otherwise, we have the equation o = 2, being the first necessary coptimality con-
dition for the vector (i,#h, 2+ k). Because of the linear dependence of the vectors we have
Sofo+ 81i -+ 84fy = 0 with certain constants 6, 6 and 8, Hence we find & = — Scam/2, 8y = — Bocam.

Condition (1.14) becomes
518y = By3micycy/2 2> 0

Thus, the necessary extremum conditions reduce to: e = 2&, ac > 0. Using the isoperi-
metric condition and the condition for a minimum of the double natural frequency, we
finally obtain the relation between the rigidities >0, which realizes the maximum
of the minimum double eigenvalue

ST W RIS S P S o> 1
ks DR b Catcs o> G Fos im

where the parameters of the problem satisfy the inequalities
a=2c >0, i=0,1,2 3 imi>1

This example admits of an intuitive geometric interpretation of the necessary extremum
conditions. In the case considered the vectors h,f,, fy are vectors normal to the surfaces

M = const, Ay = const and to the constraint surface in the space of the parameters i, &, k. There~
fore, the necessary extremum conditions reduce to the coplanarity of the vectors fifi, fo and to
the condition that vector f, belong to the cone formed by # and f.

We note that in view of the homogeneity of the functional minih and the constraint (1.15)
on the vector of variables & = (ki &, &), the optimization problem being congsidered is equival-
ent to the dual problem /14/

minp (¢, ) with min; A, = Ay = const > 0

2. The continuous case. Consider the problem of the loss of stability of an elasticrod
of variable cross-section, compressed by a longitudinal force. In diemensionless variables
the equations determining the buckling w (z)when there is a loss of stability are /1,2/

By = ', w@ =w O =w{)=uv 1)=0 (2.1)
if it is assumed that the ends £ =0 and z =1 the rod are clamped.
The optimization problem consists of determining the cross-sectional area k (z) of the rod

(h () is a non-negative continuous function) for which the critical force of loss of stability
Ao will be a maximum. It is assumed that the volume (weight) of the rod is fixed

1
(h(z)dz=1 (2.2)
1

Suppose that a function h, (z) satisfying (2.2) exists, for which the least of the eigen-
values of problem (2.1), Ay is double. Let uy (z) and uy (z) be two linearly independent
functions corresponding to the multiple eigenvalue Ae. Consider the linear subspace of all
functions, formed from ujand u,. In this subspace we choose the basis in a special way, namely,
functions w, (g) and 1w, () such that (§;; is the Xronecker delta)

1
Soi @wy () da =8, 1,]=1,2 (2.3)
']

Any eigenfunction corresponding to the double eigenvalue A, can be represented as

w, (2) = ya0, (@) + Vs 0 (@)
We give the function R, () an extension in the form ebh, where & is a small positive number.
From (2.2) it follows that

(2.4)

1
§dhdz=0 (2.5)
']
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of an analytic perturbation of the spectrum of a sel fadioint
an alytic tr
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operator /13/. We will denote by v (r) a function representing an ade.tJ.on to the unperturbed
eigenfunction 1w, (z). Argquing as in the finite-dimensional case, we arrive at the equations

(2hoBh wy") + (he*v")" + Agp” + pip,” = 0
v =v 0 =0 v{)=v {1)=0

Here p denotes the magnitude of the addition to the multiple eigenvalue &, which occurs when
the function h,(x) is varied.

Scalarly multiplyving the last equation by the functions w, (z) and w, (z} and using Eq. (2.1)
with A= 4, and w = w,(z), as well as the orthogonality property (2.3), we arrive at <the
equations determining the magnitude of the first correction with respect to & of the perturbed
eigenvalue, of the same as in Sect.l. For non-zero v; and ¥, to exist it is necessary that
the condition

12— Bur + Bag) i + Busfer — Pra® =0 2.6)
1

Bi;=2 S how"w;"6hdz, i,j=1,2
°

be satisfied.

The symmetry of the matrix of the coefficients B;; signifies that all roots of Eg.(2.6)
are real. Just as in the discrete case, the solutions of Eg.{2.6) are invariant to the choice
of the orthogonal basis w, and w, satisfying condition (2.3). The following statement holds.

3°. If the system of functions f, = hy W), fo = ko (W"), f3 = how,"w,” and f, =1 are
linearly independent then a refining variation 8k exists for which each of the perturbed eigen~-

values w:Lll be larger than the original multiple eigenvalue A,.

Proof. Consider the functional form of the function &k
1 1

1
H (8h) = - (Bus® — Pusb) = [Sm wi'Shdz || [Showx"shdz] [ § hows*6h dz | (2.7)
As in the discrete case, we will show that when the functions f{,f,%,fs are linearly in-
dependent a variation &k always exists satisfying the relaticns ﬁn =0, By =p >0, Paa =ps >
0 and condition (2.5). We note that py = p >0, py = py >0 when these relations are satis-
fied. This signifies precisely that the variation 8k ig a refining variation.
Let us consider a linear functional in the space L (0,1) of absolutely integrable func~
tions
1 1
F(y={johdz, {|fldz< oo, j&LO, 1) (2.8)
[

¢

where &k is a fixed bounded function.

Tha functicne $ § 4 3 definad ahove helons +6 *he gnama I ) 4y /18 / Wo marmaidaw
AT IVDCTICNS  Jeviivies 73 QeILN2G ALOVE DeLONY O The SPaLe L v, 1) 743/ . we CONSIGE,

the linear subspace M & L (0,1) .formed by the functions fo, fi, fa, f3» We will show that in the
set M a linear functional (2.8) exists generated by some bounded .function &k* such that

1 1
(1ionrdz =0, (Brraz=0,

0 QD b

1
f10h% dz=p, >0, {1,8h% dz==py>0

Indeed, for any function f& M the expansion f = c,f, (z} + ...csfs (z)holds, Hence follows
the linearity of the functional

1
Py =\1oh%az, 1M

To prove the continuity of F*(f) it is sufficient to show that a number d exists for
which
13

1Fe ()| =|§ Deiidh* dz|=|cpr + eapa| < d lzcif,‘da:

9 =0
Then

d== sup |epr + caps] (Slzczfafdx)
2 e

i=0

P

The upper bound of the last expression exists on the strength of the assumption of the linear
independence of the system of functions f (i = 0,1, 2, 3), which proves the continuity of F* K.
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The functional F* constructed in this way in the set M can, by the Hahn-Banach theorem, be
extended while preserving the norm (of the number d) over the whole space L (0, 1) /16/. The
latter signifies the possibility of constructing a refining variation in the case considered.

The following statement also holds.

4°. If the function ko provides an extremum of the optimization problem considered with
a double eigenvalue A, it is necessary that

1) the system of functions f, =1, f; = A", f3 = hews"%, f3 = howy"w," should be linearly
dependent, i.e., a constant §,, 8;, §, and §,; exists such that

[6y," + 8,w,™ + 83w, w,"] by = 8, (2.9)

2) the functional form H (6h) specified by Eq. (2.7) should admit of only non-negative
values for any functions &k satisfying condition (2.5).

Proof. The necessity of the first condition follows from the preceding statement. Argu-
ing as in the proof of statement 2°, we obtain the necessity of the second condition. Wewill
simply show that form (2.7) can take zero values with admissible 8k z= 0. For this we consider
a linear subspace M (C L (0, 1) generated by the functions f,, fi, f., fs and in the space L (0, 1)
we choose an element g {z) not belonging to the subspace M. We form a new subspace M’ generat-
ed by the elements fo fis fas fs and g. Further, as in the proof of the preceding statement, let
us show that a functional F* {f), f= M’', exists, which takes zero values in the subspace M
while F*-{g) = 1. While preserving the norm we extend the functional obtained, by the Hahn-
Banach theorem, to the whole space L (0,1).

It is difficult to verify the condition of non-negativity of form (2.7) in the form pre-
sented. However, we can introduce a constructive condition suitable for practical use. It
follows directly from condition (2.9} which can be written as & + 8,/, + 843 = 8. Arguing
as in Sect.l, we obtain the condition for form {2.7) to be non-negative

8,8, > 854
Example. Consider the problem of the loss of stability of a freely supported rod of vari-
able cross-section lying on an elastic foundation. Introducing dimensicnless variables, we
write the equation for the rod's buckling
(A3u"Y" + hu -+ Au* = 0
u(0)=u{t)=0, Au(0)=hru"(1)=20
Here k is a quantity characterizing the coefficient of the elastic foundation's bed, and

» is an eigenvalue (the stability loss force).
It is well-known /17/ that when h==h,=1{ problem (2.1) has a double eigenvalue when

k = 4n*. The corresponding eigenfunctions

Uy = l?.sinm, @y = T}sm 2az

are orthogonal and normalized in accordance with (2.3). We consider a variation & satisfy-

ing the volume-constancy condition
1

(ohaz =0 (2.10)
°
The functions fo, h.fys s take the form
fo = 1, f = 2n% sin? nx = 5* {1 — co8 2nz)
fa = 8at sin? 25z = 4n? (1 — cos 4nz)
y = 473 sin v sin 2nz = 2n? (cos nx — cos 3nz)
These functions are linearly independent. Consequently, according to the statements prov-

ed it is possible to construct the refining variation.
Taking into account the isoperimetric condition {2.5) we write the form (2.7}

H (dh) = 4ns l (i(cosnz——cos:im) 6ke=)’—§cosz:uud:§m4moa dz]
0 1) L)

Wwe expand the function 8k in a Fourier series in cosnx(j = 1,2,3..). The isoper:'f.metric
condition (2.10) is satisfied here for any coefficients ¢;. Substituting the expansion of &

into form M (8k), we obtain
H (8r) = n* {{cx — ¢5)F — cpul

As an example we take a=¢ =0, gq=ca=—1 Then H(6h)< 0. In addition, in this case

1
Sf,bhdz:ﬁ
[1]

and consequently
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1 1
ma:Sﬁbhdz=le, ;;,_.:Sf,bbdxa?.ﬁ’
] o

Thus, the refining variation has the form

8k (z) = — (cos 2niz + cosdnz)+ 3| ¢, 008 Rz
j=5

where the coefficients ¢ ... are arbitrary constants.

Note that if together with constraint (2.2) we impose additional conditions on the func-

tion h, then, using the arbitrariness of the coefficients ¢, ¢.. ... We can satisfy them.
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